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Variational Methods for Nonstandard
Eigenvalue Problems in Waveguide and
Resonator Analysis
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Abstract —The nonstandard (general) eigenvalue problem is defined in
operator form by L(A)f=0 and B(A)f =0, where L and B are linear
operators, and for a standard problem L is a linear function of the
parameter A and B does not depend on A. It is shown by examples, that
nonstandard problems arise in electromagnetic problems, and a unified
variational principle is formulated from which stationary functionals for the
nonstandard eigenvalues can be constructed. The examples include: cutoff
problem of a waveguide with surface reactance, propagation problem of an
azimuthally magnetized ferrite-filled waveguide, the cutoff problem of a
corrugated waveguide and the problem of a material insert in a resonator. It
is demonstrated with these simple but nontrivial examples that the present
method leads to a good engineering accuracy with very elementary test
functions.

I. INTRODUCTION

HE VARIATIONAL METHOD is a very effective
approximative method applicable in electromagnetic
problems. Its power has been clearly demonstrated in the
classical works by Harrington and Collin [1], [2]. By simple
test functions one can approximate complicated field prob-
lems and actually, without solving the field problem itself,
obtain highly accurate approximations for interesting
parameters of the problem. The eigenvalues of a problem
are recognized as important physical parameters and their
knowledge often is the main subject of the problem.
Examples of eigenvalues in microwave engineering for
which variational methods have been applied are the reso-
nance frequency of a resonator and the propagation factor
of a waveguide. Methods treating these problems have
been growing more powerful over the years in that more
general problems can be solved with less effort. In 1956,
Berk [3] derived variational principles for waveguide prob-
lems in terms of six scalar field components (the EH
formalism), valid for general lossless anisotropic and inho-
mogeneous media. In 1971, English and Young [4] ob-
tained the same in terms of three components (the E
formalism). However, because the interesting parameter,
the propagation factor §, appeared in their functional
equation in quadratic form with powers 8 and 82, they had
to apply the variational method in a reverse way: solve for
the frequency, which is normally known, in terms of the
porpagation factor, which is normally unknown. The same
defect appears in further studies on the subject [5]-[7]. The
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Hertzian potential approach [2], leading to just two scalar
field components, has been applied to only the most ele-
mentary problems, because for more complicated problems
the resulting eigenvalue equations are not of the standard
type, either because the eigenvalue does not appear in a
linear form or it is present in the boundary or interface
conditions.

In this paper, the eigenvalue problem is defined in a less
restrictive manner so that different parameters involved in
the problem can be interpreted as eigenvalues. These more
general eigenvalues are called nonstandard eigenvalues and
a more exact definition is given in Section II. In the same
section, a unified theory for obtaining stationary function-
als for different nonstandard eigenvalues, based on a
mathematical principle, is presented. Previously, Morishita
and Kumagai [6] gave a unified principle based on a
physical Lagrangian function. The present theory, however,
is more general because it embraces both reciprocal and
lossless problems, whereas [6] was limited to only lossless
problems. Moreover, the present theory allows for non-
standard eigenvalues, which may be any scalar parameters
of the problem. The problems are classified in terms of the
complexity of their functional equation. Because there may
exist many parameters each recognizable as a nonstandard
eigenvalue of the problem, there thus may exist different
functionals giving a choice of methods of different com-
plexity in solving the same problem.

Several examples are presented in the remaining Sections
ITII-VI. The examples are chosen as simple as possible, yet
nontrivial, to elucidate different aspects of the theory.

In Section III, the cutoff frequency problem of a wave-
guide with reactance boundaries is studied. Different for-
mulations of the problem are first compared: the EH
formalism leads to a standard eigenvalue problem, which is
complicated, whereas the Hertzian potential formalism re-
sults in a nonstandard problem with simple application, as
is seen by an example. Here, the eigenvalue was the cutoff
frequency of the guide. If the boundary reactance, instead,
is considered as a nonstandard eigenvalue of the problem,
the problem is seen to reduce to a linear one, which is still
simpler to handle, and an analytic result is obtained in our
example instead of a set of curves.

In Section IV, we consider the azimuthally magnetized
ferrite-filled waveguide propagation problem, which is in-
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teresting because it is of a nonstandard form in all its
parameters and the solutions have been presented in terms
of highly complicated special functions. With a simple
polynomial test function, a solution with an accuracy of a
few percent is obtained.

In Section V, the corrugated waveguide is being studied,
for which the cutoff frequency problem is of the nonstan-
dard form and the resulting functional equation for the
eigenvalue is transcendental. Conceiving the depth of the
corrugations as a nonstandard eigenvalue, an explicit sta-
tionary functional, however, can be constructed, and apply-
ing a simple test function, an analytic approximating func-
tion is obtained for the depth of corrugations for a certain
cutoff frequency.

In the final Section VI, we study a cavity with a homoge-
neous insert. The dielectric susceptibility of the insert is
first treated as a nonstandard eigenvalue of the problem,
and a functional for it is derived, which should be useful in
microwave diagnostics because it directly gives use the
value of the interesting parameter. The functional is tested
with an example. If the insert also has magnetic susceptibil-
ity, a stationary functional is derived for each of the
unknown susceptibilities. Finally, any geometrical measure
of the insert can be conceived as a nonstandard eigenvalue
of the problem. A functional equation for a simple prob-
lem is considered to find a measure of the dielectric body
inserted in the resonator.

The examples presented in this study are kept at the
simplest level possible as to demonstrate the power of the
principle, yet the error level is sufficiently low for most
engineering practice.

II. THEORY

The nonstandard (general) eigenvalue problem can be

expressed in the form
L(A)f=0 (1)
B(A\)f=0. 2)

Here L(M) is a linear operator (typically a differential or
integral operator) depending on a parameter A, which is a
complex scalar. The additional operator B(A), is also linear
and generally also depends on the same parameter. The
second equation (2) may be absent, as in the case when L is
an integral operator; for differential operators L the opera-
tor B includes the boundary conditions and interface
conditions.

The equations possess the solution f =0. The question
is: are there values of the parameter A, called eigenvalues,
for which there exist other solutions f 5 0? If the operator
L(A) has a linear dependence on the parameter: L(A)=
LyAM,, and B(\)= B, does not depend on A at all, we
call the problem the standard eigenvalue problem. There
exist important electromagnetic problems which do not
reduce to standard form, examples of which are given in
the following sections.

A variational principle can be associated with the prob-
lem (1), (2), provided there exists an inner product pair
(-,*), (+,-)p, with respect to which the operators L, B are
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self-adjoint. In fact, it will be supposed that there exists a
third linear operator C not depending on the parameter A,
such that the following Green’s formula is valid for any
functions f, g defined in the domain of the operators L, B

(g, Lf)+(Cg, Bf ), =(Lg, f)+(Bg.Cf ). (3)
In all cases considered here, the operator C turns out to
be the factor 1. The operator C could also be concealed in
a more complicated definition of the inner product (-, -),,
which wsually coincides with that of (-,-) for a different
domain. Necessary conditions for the definition of the two
inner products are as follows.
1) Additivity
(g’(fl +f2)) = (g’ f1)+(g> f2)
((g1+8). f)=(81, /) + (&, 1)

2) Completeness

(g,f)=0, forallfimplies g =0
(g,f)=0, for all g implies f = 0.
3) Symmetry
(8, /)=(f.g), forallf, g
or Hermitian symmetry (g, f)=(f, g)*, forallf, g.

These properties must be satisfied by both inner prod-
ucts and the property 2) implies vanishing in the respective
domain. The property 3) is necessary because of the Green’s
formula (3). In fact, we could try to define in terms of a
symmetric inner product (-, -), the following inner product
that is neither symmetric nor Hermitian symmetric:

(g, /)=alg, f),+B(g /"), +v(g* f), +8(g* f*)s.
(4)
Here, o, B,7v,8 are fixed real coefficients. It is not dif-
ficult to demonstrate that the properties 1) and 2) are
satisfied by (4) if they are satisfied by the symmetric inner
product (-, -),. However, if we try to apply (4) to Green’s
formula (3) even in a simpler form (g, Lf)=(Lg, f),
which should be satisfied for all f, g, we shall run into two
possibilities: either we must have 8=y =0 or a=8=0,
which correspond to the symmetric and Hermitian sym-
metric inner products, respectively. The self-adjointness. of
the operators in a symmetric inner product involves re-
ciprocal electromagnetic problems, whereas in a Hermitian
symmetric inner product it involves lossless problems. Usu-
ally, the variational principle is expressed in terms of a
Hermitian inner product [3]-[8], whence a reciprocal and
lossy problem is considered nonself-adjoint and a special
variational principle is needed. This is, however, unneces-
sary if a symmetric inner product is chosen.
The variational principle of eigenvalue problems can be
derived from a variational expression F(A; f) defined by

F(A;s £)=(f, LN S)+(Cf, BN ), (5)
It is seen that if f satisfies (1), (2), we have F(A; f)=0.
(5) might be called the potential functional of the operators
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L, B according to [21]. The stationarity of this functional is
studied by forming the first variation. If the values of f and
A are changed in this expression by 8/ and 8A, respectively,
the first variation of F can be written as
8F(X; £)=2[(8f, Lf ) +(C8f, Bf ), ]

+ON(/, L'f)+(Cf. B'f )] (6)
applying the Green’s formula (3). The operators L’ and B’
denote derivatives with respect to the parameter A of the
operators L, B. If f satisfies (1), (2) with the parameter A,
(6) gives us a relation between the variations of F and A. If
F is kept constant F(A; f)=0, we have 8 F=0 and from

(6) also 6A =0 (unless by chance the bracketed term is
zero). Hence, if we solve for A the equation

F(N: f)=(f, LA f)+(Cf, B(A)),=0  (7)
the arising functional A = J( f) is stationary when f is a
solution of (1), (2) and the stationary value of J( f) is the
value of the corresponding parameter, the nonstandard
eigenvalue.

We may also study whether the converse is true, i.e.,
whether every stationary point of the function J( f) thus
formed corresponds to a solution of (1), (2). In fact, if
F(A; f)y=0and 8J(f)=0when f= f, A=A, = J(f), we
have from (6) (8f, L(Ay)fy)+(C8f, B(Ay)fy), =0 for any
0f. If C is an operator having an inverse in the domain of
the second inner product and if values of 8/ can be chosen
independently in the domains of the two inner products,
from the completeness property of the inner products we
can conclude that L(A,)f, =0 and B(Ay)f, =0, or that
(1), (2) are satisfied..

In view of the preceding, it is clear that if an explicit
expression J( f) is obtained by solving (7) for the parame-
ter A, a functional is obtained, which is stationary in first
variations of any solution of (1), (2). Even if we cannot
solve (7) for A, we know that the roots A, are stationary
and we might try to solve the equation approximately for
A. It is important to realize that A may be any scalar
parameter of the problem, for example, in a resonator
problem with a dielectric insert it may be the dielectric
constant of the insert or any of its measures, which are not
normally conceived as eigenvalues of the resonator prob-
lem.

The theory may be generalized if we take into account
that usually there are many parameters associated with a
problem. If there are N parameters p,, p,,"**,Py, 1.€.
we have the linear operators L(p;, py, - .Pn)s
B(p,, py,---.Pn), the variational principle can be found
from (7) for any parameter p, if we consider all other
parameters p; fixed. If (7) can be solved for A = p,, what
results is a stationary functional J(p,; f). This is a very
useful property, because we are able to obtain the value of
a parameter by measuring other parameters but not the
field quantity f. For example, in the resonator problem, if
we know the measures of the insert, and measure the
resonance frequency, the functional may be applied to
obtain the dielectric parameter of the insert, which is of
great importance in microwave diagnostics. Since there is
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no perturbational approach applied here, the measurement
setup is loaded with less restrictions.

Alternatively, we might be interested about the measures
of a known dielectric sample, in which case a functional for
any measure can be derived from the previous principle.

To generalize even more, there might exist more than
one parameter whose value we wish to know. Let us
assume that there are two such parameters p, and p,. For
fixed parameter p,,---,p, values there exist one equation
for the determination of p, and p, in (7). Because this is
not enough, we have to know another set of other parame-
ters, say pj,- - -,py- Thus, there exist two equations from
which we might try to solve the unknown parameters p,
and p,. If this can be done, there result two functionals,
whose stationary values are these parameter values. This
can be generalized to more unknown parameters. As an
example we may think of an insert in a resonator with
unknown e and p. Measuring two resonance frequencies,
two equations (7) for e and p arise, from which a functional
for each can be derived by elimination of the other param-
eter. The inhomogeneous dielectrical medium of a resona-
tor could be approximated by a piecewise homogeneous
medium and the dielectric constants of each piece can be
conceived as parameters p,, which together with the
frequency as an additional parameter are nonstandard
eigenvalues of the problem. If » different resonance fre-
quencies are measured, there exist n equations for the other
n parameters.

Finally, we may consider (7) as a variational principle
for the functional F(A; f) if the value of A is kept fixed.
The stationary value of this functional is of course known
to be zero. The functional F is, however, unnecessary,
because we may use any existing stationary functional
found in a book, for a standard eigenvalue, solve it for any
parameter in the functional, and obtain a stationary func-
tional for that parameter, which is by definition a non-
standard eigenvalue of the problem. The following might
serve as a hierarchical classification of the different types
of nonstandard eigenvalue problems in terms of easiness of
solution of the functional equation (7).

1) Standard eigenvalue problem, L(A) is a linear func-
tion and B does not depend on A. Equation (7) is a linear
equation on A and an explicit stationary function can be
written

(f: Lof)+(Cf. Bof )y (8)
(/. Myf) '

2) Nonstandard eigenvalue problem, where both L and
B are linear functions of A. This is as easy to solve as the
previous case. Denoting B(A) = B, — AT, we have

(f’ Lof)+(Cf= Bof)b
(f. M)+ (L Tof )y

3) Nonstandard eigenvalue problem, where L and B are
at most quadratic functions of A. In this case, (7) is a
quadratic equation and can be solved for A. Thus, there
arise two functionals for the eigenvalue, which are both
relevant to the problem. This case is obtained in many

()=

J(f)= (9)
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practical problems, as will be seen in some examples in the
following sections. :

4) Nonstandard problem with an interesting parameter
P, which cannot be solved from (7) in explicit form because
the equation is of higher algebraic or transcendental form.
In this case, we might try an approximate solution with the
aid of Newton’s method or solve for another parameter p,
involved in the problem if the equation is solvable in
explicit form. In the latter case, we can solve p, for a set of
values p,, to obtain a relation p,( p,) from which the value
of the interesting parameter p, can be obtained. This
method has been applied for a waveguide problem in [4],

where the problem is nonstandard in the propagation

factor B and standard in the frequency «?. Alternatively,
we can solve for the functional F for a set of the parame-
ters. Because F should have the stationary value zero, this
can be applied to obtain an idea of the convergence of
difference approximations.

Finally, we study the applicability of the Rayleigh-Ritz
method [2] for nonstandard eigenvalue problems. In linear
cases 1) and 2), the method works in the normal way, i.e., it
transforms the problem to a standard algebraic eigenvalue
problem '

(10)

In the nonstandard problem of the type 3), however, we
have a quadratic algebraic eigenvalue problem

(N4+AB+C)-f=0

Lf=\M 1.

(1)

which can 'be called a nonstandard algebraic eigenvalue
problem. A problem of this kind arises in circuit theory if
we try to find the natural frequencies of a network consist-
ing of frequency independent resistors, inductors, and
capacitors. Conversely, we may interpret (11) in terms of
an equivalent circuit. The approximate nonstandard eigen-
values in the general case are roots of the algebraic equa-
tion

det[(4, L(V)g)+(Co, BOVG),] =0 (12)

if the set {¢,} is used to approximate the unknown field
function f. In case 4), this might be of a complicated
transcendental form." Any interesting single root can how-
ever-be found by applying Newton’s iteration method.

III. TaE WAVEGUIDE WITH REACTANCE
' BOUNDARIES

As a first simple example we consider a waveguide of
any cross section with a surface impedance Z, = jX,, where
X, is real and independent of the frequency. Considering
different formulations of the cutoff problem we see that a
nonstandard formulation may lead to a much simpler
functional than a standard formulation, Fig. 1.

" A. E — H Formulation

The cutoff problem of a waveguide is equal to a two-
dimensional resonator problem. In fact, the nonpropagat-
ing fields do not depend on the z coordinate. The Maxwell’s
equations with the reactance boundary condition can be
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Fig. 1. The waveguide with reactance boundary.

written in the abstract form (1), (2) with L(w)= Ly — wM,,
B(w)= B, if we define '

_ 0 v X1 _.|e 0
L‘)‘(VXI 0) M"—J(O —u)

0 0
BO*(—nXI jXSI,)- (1)

Here, I is the unit dyadic I =w,u, +u u,+u,u, and I,
is the transversal unit dyadic I, =1 —nn. The inner prod-
ucts are defined by

(fl,ﬁ)IL(E1~E2‘+HI-H2)dS

(fl’fz)b:¢C(El'E2+H1'H2)dC (14)

and the elements f are the wvector function pairs
(E(x, y)H(x, y)) defined on the surface S and its boundary
curve C. The operator C in the Green’s formula (3) is equal
to 1. This is a standard ecigenvalue problem for the ei-
genvalue w. Hence, we may apply the well-known func-
tional (8), which in this case leads to the following sta-
tionary functional:

[(rvxgtgvxf)ds
~@(n-f X g~ jX,g-I-g)dC

jf(ef-f—pg-g)ds

Applying Hermitian symmetric inner product instead of
(14) results in a slightly different form. Equation (15) is
stationary also for complex X,, whereas the Hermitian
symmetric form is not.

B. E Formulation

The trouble with (15) is that it is too complicated: there
are two vector functions f(x, y), g(x,y) to be approxi-
mated. A simplification can be obtained if we start from
the Helmholtz equation for the electric field. However, in
this case the problem is of nonstandard form

VX(VXE)—w'ueE=0, onS (16)
nX(VXE)—w(p/X)E,=0, onC. (17)
Defining the operators by
LAY =V XV XI—Npel
BAN)=nX(vXI)=Au/X)I, (18)
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and the inner products by

(fl,f2)=/SE1-E2dS

(f19f2)b:¢CEl'E2dC (19)

we have C =1 in the Green’s formula (3) and (7) is of the
second degree

F(A; f)=—N [pef?ds—Mu/X,)P 2 dC

+[(v>< 7)Y ds=0. (20)

This can be solved for A in explicit form and the result is
a pair of functionals giving as stationary value the cutoff
frequency w

| frrac

2e X, ffz ds

J(f)=

| $rrdc 2+f(v><f)2dS

2e X, ffz s

(21)
ueffz ds

Despite the more complex appearance, the functionals
(21) are more attractive than (15) because there is only one
vector function f to be approximated. Solving a quadratic
equation for a stationary functional was done in Morse
and Feshbach [22], but the result was considered more a
fortunate accident than a seed for a general method.

C. Hertzian Potential Formulation

The problem can be still simplified if Hertzian potentials
are applied. In fact, the electromagnetic field can be ex-
pressed in terms of two scalar two-dimensional potential
functions for any waveguide mode [2]

E(r)=[u,k2r(p)— jBvm(p)+ jku, X vm(p)]e 7

(22)
nH(r) =[uk2m(p)— jBYm(p)— jku, X vr(p)]e /5.
(23)

At cutoff we have §=0 and k,=k=w/ue and the
problem (16), (17) takes on the form

(vi+k>)(7)=0, ons (24)
n~Vw+k—1—7r=O
p
n-vm—kpm=20
p=X,/n, onC. (25)

Although there exist no pure TE? or TM? modes propa-
gating in a waveguide with general reactance boundaries,
from (24), (25) we see that the = and m potentials are
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independent, whence at cutoff the fields are seen to reduce
to TE? and TM? modes. This fact can be used to classify
the modes into two sets.

Let us concentrate on the TE cutoff problem. From (24),
(25) we see that it is a nonstandard eigenvalue problem of
the quadratic type. Identifying the operators L =v? + k2
and B=n-v — kp, the Green’s formula (3) can be seen to
exist with the operator C=1 and the inner products de-

fined by (f;, £) = [f1 £ dS, (f1, /)= ¢f1 /,dC. Hence, (7)
can be solved for the eigenvalue A

Sﬁfde i /(Vf)zdS
+ :

95f2dc
pszzds ffzdS

J(f)=p +
2/f2ds

(26)

The form of this functional is evidently superior to (21)
and (15) in simplicity. Like (21), (26) contains two func-
tionals, which are both relevant to the problem. However,
all the information can be obtained from either of them. In
fact, looking at the original problem (24), (25), and values
of the boundary parameter p, we see in comparing the two
functions J_. ( p, f) that we have the simple relation

Ji(P,f):_J:(_Paf) (27)

or the values obtained from the functional J_( f) for the
parameter p are obtained from the other functional —J
(f) for the parameter — p. Further, the functional for the
TM cutoff can also be reduced to this same functional
because we may write

TP, )= =2 1), (28)

Hence, it suffices to consider only one functional, say

S (f)-

D. The Circular Cylindrical Waveguide

As a simple numerical example we consider a circular
cylindrical waveguide with surface reactance X, = pn and
radius a, Fig. 2. The Hertzian potential problem can be
solved in terms of Bessel functions; in fact the most general
solution of either potential in (24), (25) is a linear combina-
tion of functions J(kp)e™/"®. Imposing the boundary
condition for the TE mode leaves us with the characteristic
equation

T.(ka) = pJ,(ka). (29)

This equation can be solved for low values of # with high
accuracy applying tabulated values of the Bessel function.
The eigenvalue ka as a function of the parameter p is given
in Fig. 3 for the lowest TE,, modes.

Now we apply the functional J_(f) in (26). Taking a
simple linear approximation of the Hertzian potential func-
tion m(p)

flp)=p+aa

(30)



LINDELL: VARIATIONAL METHODS FOR NONSTANDARD EIGENVALUE PROBLEMS

02

I
T
4

' ™.
N

° 3
-0 .5-3 -2 -1 -5 -3 o 3 5 1 235 <«

Fig. 3. Relation between cutoff values ka and normalized surface reac-
tance p = X, /7 of a circular cylindrical waveguide. Solid line: exact,
dashed line: approximate.

we have from (26)

o (o) = — p(1+a)
" o +4a/3+1/2
N p*(1+a)* 1
(e’ +4a/34+1/2)  a*+4da/3+1/2

(31)

The extremal values of this function with respect to «
can be found very easily with the aid of a programmable
calculator. For example, for p =1 we have a maximum for
J, at a= —0.795 corresponding to the cutoff value ka =
3.188, which is in error by 2.4 percent. The approximate
values obtained from (31) are depicted in Fig. 3 by a
dashed line. It is seen that the approximation by a linear
function is fair for the TE; mode but fails for higher
modes, as expected.

Here we have considered only positive values of the
functional. The negative values are obtained if the diagram
is rotated 180° around the origin. The eigenvalues for the
TM modes are obtained if both halves of the diagram are
interchanged. If the figure is drawn on a cylinder in such a
way that the p = — oo line coincides with the p = + oo line,
this last operation equals 180° rotation of the figure on the

.cylinder.

E. A Functional for the Reactance

There are two parameters involved in this simple exam-
ple, namely the cutoff frequency and the boundary reac-
tance parameter p. We could consider this problem with
fixed cutoff frequency and find the corresponding values of
p, which are nonstandard eigenvalues of the problem. The
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Fig. 4. The ferrite-filled circular waveguide.

problem is of the type 2) for the parameter p, because
B(p)is a linear function and L is a constant. Hence, a
simpler functional (9) can be applied with My, =0, Ly =L,
B, =n-v and T, = k. The functional reads

[(vfyas—k*[fas
‘k¢f2 dc
Applying the same approximation (30) we have
(a) 1-(ka)*(a® +4a/3+1/2)
Ja)= 3
‘ 2(ka)(1+ a)’

for which we can find the stationary value of « in an
analytical form a= —(3/(ka)*+1/2). Thus, an analytic
approximation for the parameter p in terms of ka exists

_ ~ka((ka)’ —18)
6((ka)’—6)

If we wish to have an approximation for the function
ka(p), we can approach by treating ka fixed and p a
nonstandard eigenvalue, whereas to know the cutoff
frequency for a certain value of p, it is simpler to apply the
more complicated functional (26), once than, (32), for
many times.

17)= (32)

(33)

(34)

1IV. WAVEGUIDE WITH AZIMUTHALLY MAGNETIZED
FERRITE

A circular waveguide filled with ferrite medium mag-
netized to remanence with the aid of an axial current pulse
has proved useful in microwave phase shifting devices
[9]-[12]. The operating mode is TE,, which is rotationally
symmetric and the propagation factor 8 depends on the
direction (handedness) of the magnetization with respect to
the direction of propagation. The magnetization in the
ferrite can be reversed with a current pulse, whence the
propagation factor is changed in a very short period of
time, Fig. 4.

The permeability dyadic of the ferrite in remanence can
be written in the form [9], [11]

p=po(I+ jpu,x1I), (35)

Here, M, is the magnetization in the ¢ direction (nega-
tive if in the — ¢ direction) and v is the gyromagnetic ratio
of the medium. The magnetization is assumed homoge-

p:yM¢/w.
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neous, but p is not constant because it depends on the
angle ¢. The mathematical problem of TE,, mode propa-
gation in the guide can be expressed in terms of a single
scalar component, for instance E, as in [9] or H, [11]. The
latter obeys the following differential equation and
boundary conditions:

B

VIH(p)*+|k*—k*pt—p> === | H,(p) =0,

H(0)=H!(a)=0.
(36)

The conductor filament on the axis is assumed infinitely
thin and for the TE,, mode it does not perturb the field
and can in fact be neglected if the field is assumed finite on
the axis.

Equation (36) can be exactly solved in terms of Kummer
and Tricomi confluent hypergeometric functions of pure
imaginary argument [9], [11], and the zeros of these func-
tions have been tabulated by Ivanov [11], [12].

The problem is, however, more directly attacked by
variational methods. From (36) we see that there are three
parameters involved: k, p, and B. It is also seen that the
operator is of the nonstandard form in all of these parame-
ters: it is of second degree in p and B, whereas if the w
dependence of p is taken into account, (7) would be of the
third degree in k or w. Normally there are two kinds of
questions posed: what is the propagation factor 8 for
certain values of other parameters and for what value of
magnetization M, or parameter p do we have a certain
propagation factor? The last question can be posed in a
more specific form: for what value of opposite magnetiza-
tion = M do we have a certain average propagation factor
(B4 +B_)/2 and a certain difference of propagation fac-
tors B, —B_?

The functional is easily obtained for 8 from (7) and the
result is

plfd
J(f): __‘[__p
2ff2pdp
a4 _{)f_]d_iif)_ +k2_p2k2_m'
2ffzpdp ff2pdp

(37)

As a numerical example we may take the lowest degree

power function satisfying the correct boundary conditions
(36). From f’'=3p(p — a) we have

f(p)=F—3ap* +a (38)

where « is a parameter. Varying a we can find the sta-
tionary value of J(f) with a programmable calculator in
just a few steps. In Fig. 5 the values of (37) with + sign are
shown in dashed line and comparison with the exact values
[12] can be made. The curves are calculated for ka =16 for
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Fig. 5. Normalized propagation constant 8/k in a ferrite-filled wave-

guide for opposite values of the magnetization parameter p. Solid line:
exact [12], dashed line: approximate. ka =16.

different values of the magnetization parameter p. It is
found that for | p| <0.5, the error is less than about 3
percent, which is enough for most engineering purposes.
For higher values of | p| the third-degree polynomial ap-
parently is unable to approximate the field distribution
accurately enough. Approximation for the field is obtained
from (38) by substituting the « value at the stationary
point.

The functional for the other nonstandard eigenvalue p
can be obtained very easily from (37) applying a transfor-
mation. In fact, if in the original problem (36) we replace 8
by kp and p by B/k, the problem does not change at all.
Hence, the same transformation can be made in the func-
tional (37) and the resulting J( f) gives us as a stationary
value an approximation to kp. In fact, we can use the
resulting diagram (Fig. 5) and scale it according to this
transformation, whence we would get the same diagram.
The diagram is, hence, symmetric at the 45° line and it
suffices to determine only half of it.

It is the merit of this method that more complicated
geometries, for example the one involving a ferrite rod on
the axis of the circular waveguide with a dielectric sheath,
can be handled with just a little more complication in the
functional, whereas the exact formulation involves a char-
acteristic equation with ratios of both Bessel’s functions
and Kummer’s hypergeometric functions of imaginary
argument, which make the analysis very time consuming
[12].

V. THE CORRUGATED WAVEGUIDE

Corrugated waveguides and corrugated horns have been
applied as feed elements for parabolic reflector antennas
because of their rotational symmetric radiation pattern and
low crosspolarization [13], [14] (see Fig. 6). The corrugated
waveguide has been studied extensively [15]-[18] in both
rectangular and circular cylindrical geometry applying ex-
act formulation with special functions. When the corruga-
tions are very thin, i.e., the period d is much smaller than
the wavelength in the guide, the anisotropic surface imped-
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Fig. 6. The corrugated dielectrically loaded circular waveguide.

ance approximation can be applied [19]. The waveguide
problem differs from the problem considered in Section III
in that the surface impedance is now inherently frequency
dependent. The problem is a nonstandard eigenvalue prob-
lem leading to a transcendental equation for A.

Let us.consider a circular waveguide with dense corruga-
tions, possibly filled with dielectric material. If the dielec-
tric constant e, is high enough, the depth of the corruga-
tions can be made small: s < a, whence we can approxi-
mate the true boundary impedance condition involving
Bessel’s functions [18] by those valid for plane surfaces [19]

E,/H,= 4j% tan(kns) E,/H,=0, atp=a.

(39)

Here, n denotes the refraction index = /€, . For simplic-

ity, we only try to find out the cutoff frequencies for the

lowest modes. Expressing the fields in terms of the Hertzian

potentials (22), (23) we have for f#=0 and k.= k the
problem [20]

(V2 +K2) (= | m)=0,

/2, O
0 Z,/n

Z, = j% tan (kns)

onS (40)

k- () + k2( )(;)zo, oﬁc"(41)

Z

zz

0. (42)
The boundary conditions (41) do not couple the poten-
tial functions, whence at cutoff there exist pure TE and -
TM modes. This could be applied for the classification of
the modes, The TE mode cutoff problem is simple, because
it is the same as that for the smooth conducting guide. For

the TM mode we have the boundary condition
n- v+ kncot(kns)m =0. (43)

Thus, the parameters k, r, and s are in a transcendental
function and, hence, the equation (7) is transcendental

F(k,n,s; f)=k? [ f2ds
S

_fs(vf)z s k”°°t(k"S)95cf2dC: 0. (44)

An explicit functional cannot be found for & nor n but,
instead, for s we can write

— [(vfYdS+k2[f2ds
J(f)—*—;lgcot_l f ' f

. (45)
knséfz dC
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Fig. 7. Relation between the cutoff value ka, normalized depth of
corrugation s /a and index of refraction n =/, in the circular corru-
gated waveguide of Fig. 6.

From this functional it is possible to obtain the value s
of the corrugation depth, giving us a given cutoff wave-
numbser k for a certain mode if the potential corresponding
to that mode is approximated in (45). The lowest TM
cutoff mode is the mode designated HE,; and at cutoff its
field resembles that of TM,, of the smooth waveguide. For
a trial function we take one with cos¢ dependence on the
azimuthal coordinate and the simplest polynomial of p
with a parameter and vanishing on the axis, i.e., p(p —a)

fp.¢)=p(p—a)cos¢. (46)
If this is substituted in (45) and integrations carried out,
we look for the stationary point (d /da)J(a) =0, whence

we have from the resulting equatlon ka=2/3)ka+(5/ka),
which substituted in the J(a) expression gives us

_I(Z%E(Um) (2(ka)? —75)_1))'

20((ka)* —15)
(47)

The validity of the approximate expression (47) is obvi-
ously limited for low values of s/a, because of the ap-
proximation (39). In Fig. 7 we see values of s/a for
different values of ka and n = /€, calculated from (47). It
is seen that all curves go through the point.s /a=0, ka=
3.87, which corresponds to the cutoff value of the smooth
waveguide for the TM,, mode. The  true. value is 3.832,

1
s_/a—%cot

~ whence the error is 1 percent. Also, one of the points can

be checked from a diagram in [18)]. For a /(a +5)=0.9 or
s/a=0.1111 we have from (47) the value ka = 3.438, which
lies on the curve in Fig. 3 of [18] w1th1n reading accuracy.
The possibility of obtaining an explicit expression (47)
for a transcendental nonstandard eigenvalue problem is, of
course, accidental and if we.had not made the starting
approximation (39), we could not have arrived at such a
simple result. In that case, we could have treated all the
parameters k, n,s known, and looked for the stationary
points of the functional F(k, n, s; f) itself from (44).
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As a final example we consider a cavity resonator with
inserted unknown medium and mainly concentrate on mi-
crowave diagnostic problers, i.e., determination of material
properties by measurements of the resonance frequencies
and Q values of the resonator (see Fig. 8). The material
parameters can be conceived as nonstandard eigenvalues of
the problem and stationary functionals can be constructed
directly for the unknown parameters instead of measured
parameters, which reduces the amount of calculations
needed.

THE INHOMOGENEOUS RESONATOR

A. Dielectric Insert

In this first example we consider a resonator with a
dielectric insert and derive a stationary functional for the
dielectric constant. To test the principle stated in Section
II, viz., that any correct functional stationary in one
parameter (eigenvalue) can be applied to derive a sta-
tionary function for another parameter, we borrow a func-
tional for the quantity w? from [1, egs. (7)-(45)]

Jr (v X EY av+2¢n-((»7'v X E)X E) dS
) [eE?av '
(48)

Here, the volume integrals extend over the whole resona-
tor and the surface integral over the resonator surface. The
test function E is assumed continuous in ¥V, otherwise an
additional surface term would appear. Both € and ¢ may be
functions of ». Assuming p =, constant and e = ey (1+
x (7)) such that the susceptibility x is constant in a volume
V, and =0 outside V,, we may solve (48) for x

/(v ><E)2dV—k2fE2dV+256n-E><(v X E)dS

X_

k*| E*dv
Yy

(49)
where the direction of n is inwards. The volume integrals in
the numerator are over the whole volume V and k*=
weottq.

To test this expression we consider a simple example: a
rectangular resonator loaded with a dielectric. The lowest
mode (TE ;) can be written in terms of sine functions and
the characteristic equation for & is of the form

tany(ka)? —(ma /¢ (1— d /a)
V(ka)’ = (wa /<)’

 tanye(ka)’ —(na/c)’ (d/a)
Ve (ka) —(naje)

(50)
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Fig. 8. A resonator with a dielectric insert, €, =1+ x.

Taking the test function E(r)=u,sin(7z/c)f(x), the
function (49) is reduced in the following form:

JCy de—(k2 =(/e)’) [ 12 ax

+2[£(0)7(0)— f(a)f'(a)]
K [77ax
0

where other integrals than that in the numerator extend
from 0 to a.

As a test we try the simplest power polynomial satisfying
the correct boundary conditions f(0) = f(a) =0 and con-
taining one parameter A

f(x)=x(a—x)(1+ax) (52)

which substituted in (51) gives us a function of a too
complicated to be handled analytically. The optimum,
however, is easily obtained with a calculator. For example,
for e, =2 and ¢c=d=a/2 we have from (50) the exact
value ka =5.6530 for resonance. For these figures, from
(51) we obtain the stationary point at ag =0.498: x =
0.9438, or €, =1.9438, whence the error is —2.8 percent. At
¢,=1.1 the error is only 1.1 percent and it grows for
growing «,.

The. functional (49) is more applicable for microwave
diagnostics than (48), because the former gives us for a
measured value of the resonance frequency w the inter-
esting susceptance x value directly, whereas to apply (48),
we have to perform a search for the stationary point for
many guessed values of x to obtain the measured w.

The functional (49) obviously also works for lossy dielec-
trics, in which case x becomes complex. For that we have
to know the complex resonance frequency. For small losses
the real resonance frequency w, and the Q value of the
resonator can be combined to a complex resonance
frequency w=w,(1+ j/20).

Also, application of (49) can be compared with the
common perturbational methods. It is evident, that the
present method does not impose as many limitations as
does the perturbation method to the measurement setup.
On the other hand, if the insert is small, the present
method is equivalent with the perturbational method [1].

Jf)= (51)

B. Dielectric— Magnetic Insert

The insert of the previous example may also show mag-
netic susceptibility, in which case we wish to find out two
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parameters: x, and x,,. Measuring two resonances with the
respective frequencies w, and w,, we are able to construct
stationary functionals for each of the interesting parame-
ters X, X - Starting from the E — H formulation with the
operators (13) (X, = 0 in this case), (7) can be evaluated to
give

xeeOfV‘Ede+ xm,u,ofV‘Hz dv=— eOfVEde—!- p?fVHZ av

1
+.—f(E-v><H+H-VXE)dV+—L¢n-EdeS.
JwJy Jw /s

(53)

Denoting the factor functionals as follows:
WNE)=keo[ B2 AV Wo(H)=kp[ H*aV
4 "

(54)

and the right-hand side of (53) by 4G(E, H; w) , we can
write a system of functional equations for x,, x,, for two
resonance frequencies w,;, w, and the corresponding func-
tions approximating the two modes

I/Ve!(fl) —Wni(gl)
Wi H) —W.s)

G(fi. 8 “’1))
G(fzagz;‘*’z) .
V (55)

Xe

)

This system can be solved for the susceptibilities

- Wo(8:)G( f1, 815 ©) —W,(8)G( fr, 8 @)
Wn];(gz)VVel( M -W.(g)W.(£)

€

(56)
- W (£)G(f1, 815 0) =W £)G( L, 82} @)
— W LIWa(8) + W)W, (82)

m

(57)
which are stationary for the correct resonance fields f, = E;,
g =H,.

The same method can be applied if the insert is com-
posed of piecewise homogeneous parts, whose dielectric
constants can be solved from the functional equation sys-
tem.

C. The Geometrical Parameters

A functional equation can also be written for any geo-
metrical parameters of the problem. Any of the measures
of the resonator itself or the dielectric insert is a possible
nonstandard eigenvalue. The problem is to find an explicit
form for the parameter in question. Let us consider a
simple example for which this can be made, namely, the
determination of the thickness 4 of a dielectric insert in a
rectangular cavity as shown in Fig. 9.

The functional (51) can be applied in this case by giving
it the value x and comsidering the parameter d as the
unknown. The trouble is, the unknown in the functional
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Fig. 9. The dielectrically loaded rectangular resonator.

equation is the limit of an integral
d a 2 2
K*{ f2dx= Y dx—(k*—(7/c
xk?['r2dx= [[(f) do—(k* = (a/c))

[ £ ax 201070~ fla)f (a)]-
This equation, in fact, defines a functional d = J(f). Of
course, we can try to obtain a more explicit expression by
transforming the function f to an integrable form. In fact,

if instead of the test function f we consider a function g(x)
defined by

g(x)=f*x) orf(x)=Vg'(x)

(58) can be written in the form

8() =50+ —5 [ ) /g () ax

(59)

s LN PORO)
X

= (s7(a) - 57(0)). (60)
xk .

If the inverse of the function g is known, (60) defines an
explicit functional J(g)=g ! (RHS) where RHS denotes
the right-hand side of the equation (60).

The application of (60) sets several practical limitations
concerning the choice of the test function g(x):

1) Vg'(x) should approximate the field function. For a
lossless problem, g(x) should be a monotonously in-
creasing positive function;

£(0) = 0 should be satisfied;

to proceed analytically, the function (g")?/g’ should
be analytically integrable;

4) g~ ! should be performable analytically.

2)
3)

The limitation 4) may not be crucial; if g is simple
enough, we can find the stationary value for g(¢) and solve
the resulting equation for d in some approximate manner.

As an example we consider the test function

a 2ax

g(x)———%(x—-z-;sin——a——)

(61)
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which obviously satisfies 1), 2), and 3), but not 4). Because
g’ = (sin(mx /a))*, we have f =sin(wx /a), which is a fair
approximation. Substituted in (60) we have
g(d) == ((n/a)’ +(n/c)’ = k?).

2xk

There is no parameter to be optimized in (62), but the
value g(d) only involves a quadratic error. Substituting the
values of the example in Section VI-A: x =1, c=a/2,
ka=15.6530, we obtain from (62) g(d)=0.271a, and this
transcendental equation can be solved for d by iteration.
The process d;/a=0.5442+(sin(27d, _, /a))/27 can be
applied, but it converges very slowly. In this case we have
d ~0.522qa, which is in error by 4.4 percent. This simple
example should however demonstrate the applicability of
the method.

(62)

VII.

The concept of nonstandard eigenvalue has been intro-
duced and a unified variational principle in abstract opera-
tor form given, applicable for a large variety of problems.
Several simple but nontrivial examples have been studied
with the aid of the suggested method. It is seen that these
problems, not earlier attacked with variational methods
because of the nonstandard form, can be solved applying
very elementary test functions and a programmable calcu-
lator for engineering accuracy.

CONCLUSION
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