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Variational Methods for Nonstandard
Eigenvalue Problems in Waveguide and

Resonator Analysis
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Abstract —The nonstandard (general) eigenvahre problem is defined in

operator form by L( X )f’ = O and B(A) j = O, where L and B are linear

operators, and for a standard problem L is a linear function of the

parameter k and B does not depend on ~. It is shown by examples, that

nonstandard problems arise in electromagnetic problems, and a unified

variational principle is formulated from which stationary functional for the

nonstandard eigenvahres can be constructed. The examples include cutoff

problem of a waveguide with surface reactance, propagation problem of an

azimuthally magnetized ferrite-filled wavegnide, the cutoff problem of a

corrugated wavegnide and the problem of a material insert in a resonator. It

is demonstrated with these simple but nontrivial examples that the present

method leads to a good engineering accuracy with very elementary test

functions.

I. INTRODUCTION

T HE VARIATIONAL METHOD is a very effective

approximative method applicable in electromagnetic

problems. Its power has been clearly demonstrated in the

classical works by Barrington and Collin [1], [2]. By simple

test functions one can approximate complicated field prob-

lems and actually, without solving the field problem itself,

obtain highly accurate approximations for interesting

parameters of the problem. The eigenvalues of a problem

are recognized as important physical parameters and their

knowledge often is the main subject of the problem.

Examples of eigenvalues in microwave engineering for

which variational methods have been applied are the reso-

nance frequency of a resonator and the propagation factor

of a waveguide. Methods treating these problems have

been growing more powerful over the years in that more

general problems can be solved with less effort. In 1956,

Berk [3] derived variational principles for waveguide prob-

lems in terms of six scalar field components (the EH
formalism), valid for general lossless anisotropic and inho-

mogeneous media. In 1971, English and Young [4] ob-

tained the same in terms of three components (the E
formalism). However, because the interesting parameter,

the propagation factor ~, appeared in their functional

equation in quadratic form with powers ~ and ~ 2, they had

to apply the variational method in a reverse way: solve for

the frequency, which is normally known, in terms of the

porpagation factor, which is normally unknown. The same

defect appears in further studies on the subject [5]-[7]. The
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Hertzian potential approach [2], leading to just two scalar

field components, has been applied to only the most ele-

mentary problems, because for more complicated problems

the resulting eigenvalue equations are not of the standard

type, either because the eigenvalue does not appear in a

linear form or it is present in the boundary or interface

conditions.

In this paper, the eigenvalue problem is defined in a less

restrictive manner so that different parameters involved in

the problem can be interpreted as eigenvalues. These more

general eigenvalues are called nonstandard eigenvalues and

a more exact definition is given in Section II. In the same

section, a unified theory for obtaining stationary function-

al for different nonstandard eigenvalues, based on a

mathematical principle, is presented. Previously, Morishita

and Kumagai [6] gave a unified principle based on a

physical Lagrangian function. The present theory, however,

is more general because it embraces both reciprocal and

Iossless problems, whereas [6] was limited to only lossless

problems. Moreover, the present theory allows for non-

standard eigenvalues, which may be any scalar parameters

of the problem. The problems are classified in terms of the

complexity of their functional equation. Because there may

exist many parameters each recognizable as a nonstandard

eigenvalue of the problem, there thus may exist different

functional giving a choice of methods of different com-

plexity in solving the same problem.

Several examples are presented in the remaining Sections

III–VI. The examples are chosen as simple as possible, yet

nontrivial, to elucidate different aspects of the theory.

In Section III, the cutoff frequency problem of a wave-

guide with reactance boundaries is studied. Different for-

mulations of the problem are first compared: the EH
formalism leads to a standard eigenvalue problem, which is

complicated, whereas the Hertzian potential formalism re-

sults in a nonstandard problem with simple application, as

is seen by an example. Here, the eigenvalue was the cutoff

frequency of the guide. If the boundary reactance, instead,

is considered as a nonstandard eigenvalue of the problem,

the problem is seen to reduce to a linear one, which is still

simpler to handle, and an analytic result is obtained in our

example instead of a set of curves.

In Section IV, we consider the azimuthally magnetized

ferrite-filled waveguide propagation problem, which is in-
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teresting because it is of a nonstandard form in all its

parameters and the solutions have been presented in terms

of highly complicated special functions. With a simple

polynomial test function, a solution with an accuracy of a

few percent is obtained.

In Section V, the corrugated waveguide is being studied,

for which the cutoff frequency problem is of the nonstan-

dard form and the resulting functional equation for the

eigenvalue is transcendental. Conceiving the depth of the

corrugations as a nonstandard eigenvalue, an explicit sta-

tionary functional, however, can be constructed, and apply-

ing a simple test function, an analytic approximating func-

tion is obtained for the depth of corrugations for a certain

cutoff frequency.

In the final Section VI, we study a cavity with a homoge-

neous insert. The dielectric susceptibility of the insert is

first treated as a nonstandard eigenvalue of the problem,

and a functional for it is derived, which should be useful in

microwave diagnostics because it directly gives use the

value of the interesting parameter. The functional is tested

with an example. If the insert also has magnetic susceptibil-

ity, a stationary functional is derived for each of the

unknown susceptibilities. Finally, any geometrical measure

of the insert can be conceived as a nonstandard eigenvrdue

of the problem. A functional equation for a simple prob-

lem is considered to find a measure of the dielectric body

inserted in the resonator.
The examples presented in this study are kept at the

simplest level possible as to demonstrate the power of the

principle, yet the error level is sufficiently low for most

engineering practice.

II. THEORY

The nonstandard (general) eigenvalue problem can be

expressed in the form

L(A)f=o (1)

B(A)f=o. (2)

Here L(A) is a linear operator (typically a differential or

integral operator) depending on a parameter A, which is a

complex scalar. The additional operator B(A), is also linear

and generally also depends on the same parameter. The

second equation (2) may be absent, as in the case when L is

an integral operator; for differential operators L the opera-

tor B includes the boundary conditions and interface

conditions.
The equations possess the solution ~= O. The question

is: are there values of the parameter A, called eigenvalues,

for which there exist other solutions ~ # O? If the operator

L(A) has a linear dependence on the parameter: L(A)=

Lo AMO, and B(A)= B. does not depend on A at all, we

call the problem the standard eigenvalue problem. There

exist important electromagnetic problems which do not

reduce to standard form, examples of which are given in

the following sections.

A variational principle can be associated with the prob-

lem (l), (2), provided there exists an inner product pair

(”, ”), (”, ”)~, with respect to w~ch the operators L, B are

self-adjoint. In fact, it will be supposed that there exists a

third linear operator C not depending on the parameter A,

such that the following Green’s formula is valid for any

functions f, g defined in the domain of the operators L, B

(g, Lf)+(Cg, Bf), =( Lg, f)+(Bg, Cf),. (3)

In all cases considered here, the operator C turns out to

be the factor 1. The operator C could also be concealed in

a more complicated definition of the inner product (”, ”)~,

which usually coincides with that of (., . ) for a different

domain. Necessary conditions for the definition of the two

inner products are as follows.

1) Additivity

(g>(f, +f,))=(g, f,)+(g>f,)

((g, +g2)>f) =(g,>f)+(g2, f).

2) Completeness

(g, f)=o, for all~ implies g = O

(gjf)=o> for all g implies f = O.

3) Symmet~

(g, f)=(f, g), forallf, g

or Hermitian symmetry (g, f ) = ( f, g)*, for allf, g.

These properties must be satisfied by both inner prod-

ucts and the property 2) implies vanishing in the respective

domain. The property 3) is necessary because of the Green’s

formula (3). In fact, we could try to define in terms of a

symmetric inner product (., . ), the following inner product

that is neither symmetric nor Hermitian symmetric:

(g> f)=~(g, f)s+B(g> f*)s+Y(g*, f)s+Ng*, f*)s”

(4)

Here, a, /3, y, 8 are fixed real coefficients. It is not dif-

ficult to demonstrate that the properties 1) and 2) are

satisfied by (4) if they are satisfied by the symmetric inner

product (., .),. However, if we try to apply (4) to Green’s

formula (3) even in a simpler form (g, Lf ) = (Lg, f ),

which should be satisfied for all f, g, we shall run into two

possibilities: either we must have /3= y = O or a = 8 = O,

which correspond to the symmetric and Hermitian sym-

metric inner products, respectively. The self-adjointness of

the operators in a symmetric inner product involves re-

ciprocal electromagnetic problems, whereas in a Hermitian

symmetric inner product it involves lossless problems. Usu-

ally, the variational principle is expressed in terms of a

Hermitian inner product [3]–[8], whence a reciprocal and

lossy problem is considered nonself-adjoint and a special

variational principle is needed. This is, however, unneces-

sary if a symmetric inner product is chosen.

The variational principle of eigenvalue problems can be

derived from a variational expression F(A; f ) defined by

F(X; f )=( f, L(~) f)+(Cf, B(~)f)b. (5)

It is seen that if f satisfies (l), (2), we have F(A; f ) = O.

(5) might be called the potential functional of the operators
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L, B according to [21]. The stationarity of this functional is

studied by forming the first variation. If the values of ~ and

A are changed in this expression by ~~ and 8A, respectively,

the first variation of F can be written as

8F(A; f)=2[(8f, Lf)+(c8f, Bf)6]

+dx[(~, L’f)+(Cf, B’f)~] (6)

applying the Green’s formula (3). The operators L’ and B’

denote derivatives with respect to the parameter A of the

operators L, B. If j’ satisfies (l), (2) with the parameter A,

(6) gives us a relation between the variations of F and A. If

F is kept constant F(X; f)= O, we have 8F = O and from

(6) also ISA= O (unless by chance the bracketed term is

zero). Hence, if we solve for A the equation

F(A; f)=(f, L(A) f)+(C’, B(X) f)~=O (7)

the arising functional A = J( ~ ) is stationary when j is a

solution of (1), (2) and the stationary value of J(f) is the

value of the corresponding parameter, the nonstandard

eigenvalue.

We may also study whether the converse is true, i.e.,

whether every stationary point of the function Y(~) thus

formed corresponds to a solution of (1), (2). In fact, if

F(A; f)=O andi3.T~)=O when~=~O, A=AO=J(~O), we

have from (6) (d~, L(AO)fO)+(Ctlf, B(XO)fO)~ = O for any

d~. If C is an operator having an inverse in the domain of

the second inner product and if values of 8~ can be chosen

independently in the domains of the two inner products,

from the completeness property of the inner products we

can conclude that L(AO)~O = O and B(AO)~O = O, or that

(l), (2) are satisfied..

In view of the preceding, it is clear that if an explicit

expression J(j) is obtained by solving (7) for the parame-

ter A, a functional is obtained, which is stationary in first

variations of any solution of (1), (2). Even if we cannot

solve (7) for A, we know that the roots A, are stationary

and we might try to solve the equation approximately for

A. It is important to realize that X may be any scalar

parameter of the problem, for example, in a resonator

problem with a dielectric insert it may be the dielectric

constant of the insert or any of its measures, which are not

normally conceived as eigenvalues of the resonator prob-

lem.

The theory may be generalized if we take into account

that usually there are many parameters associated with a

problem. If there are N parameters p,, p2, ” “ “ ,pN, i.e.,

we have the linear operators L(pl, pz, . . . ,p~),

B(P19P2>-” “ ,p~), the variational principle can be found
from (7) for any ptiameter p, if we consider all other

parameters pj fixed. If (7) can be solved for A = p,, what

results is a stationary functional J( p,; f). This is a very

useful property, because we are able to obtain the value of

a parameter by measuring other parameters but not the

field quantity ~. For example, in the resonator problem, if

we know the measures of the insert, and measure the

resonance frequency, the functional may be applied to

obtain the dielectric parameter of the insert, which is of

great importance in microwave diagnostics. Since there is

no perturbational approach applied here, the measurement

setup is loaded with less restrictions.

Alternatively, we might be interested about the measures

of a known dielectric sample, in which case a functional for

any measure can be derived from the previous principle.

To generalize even more, there might exist more than

one parameter whose value we wish to know. Let us

assume that there are two such parameters p, and p2. For

fixed parameter p~,. . . 7PN values there exist one equation

for the determination of p, and p2 in (7). Because this is

not enough, we have to know another set of other parame-

ters, say pj,. . “ ,PL. Thus> there exist two equations from
which we might try to solve the unknown parameters p,

and p2. If this can be done, there result two functional,

whose stationary values are these parameter values. This

can be generalized to more unknown parameters. As an

example we may think of an insert in a resonator with

unknown c and p. Measuring two resonance frequencies,

two equations (7) for ~ and p arise, from which a functional

for each can be derived by elimination of the other param-

eter. The inhomogeneous dielectrical medium of a resona-

tor could be approximated by a piecewise homogeneous

medium and the dielectric constants of each piece can be

conceived as parameters p,, which together with the

frequency as an additional parameter are nonstandard

eigenvalues of the problem. If n different resonance fre-

quencies are measured, there exist n equations for the other

n parameters.

Finally, we may consider (7) as a variational principle

for the functional F(A; ~) if the value of h is kept fixed.

The stationary value of this functional is of course known

to be zero. The functional F is, however, unnecessary,

because we may use any existing stationary functional

found in a book, for a standard eigenvalue, solve it for any

parameter in the functional, and obtain a stationary func-

tional for that parameter, which is by definition a non-

standard eigenvalue of the problem. The following might

serve as a hierarchical classification of the different types

of nonstandard eigenvalue problems in terms of easiness of

solution of the functional equation (7).

1) Standard eigenvalue problem, L(A) is a linear func-

tion and B does not depend on A. Equation (7) is a linear

equation on A and an explicit stationary function can be

written

~(f)= (f, LOf)+(Cf, BOf),

(“f>%f) “
(8)

2) Nonstandard eigenvalue problem, where both L and

B are linear functions of X. This is as easy to solve as the

previous case. Denoting B(A) = BO – ATO, we have

-(f, L)f)+(C’’, f+J),
‘(f)=(f, ikf,f)+(c’’, qf)b” (9)

3) Nonstandard eigenvalue problem, where L and B are

at most quadratic functions of A. In this case, (7) is a

quadratic equation and can be solved for A. Thus, there

arise two functional for the eigenvalue, which are both

relevant to the problem. This case is obtained in many
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practical problems, as will be seen in some examples in the

following sections.

4) Nonstandard problem with an interesting parameter

PI w~ch cannot be solved from(7) in explicit form because
the equation is of higher algebraic or transcendental form.

In this case, we might try an approximate solution with the

aid of Newton’s method or solve for another parameter p2

involved in the problem if the equation is solvable in

explicit form. In the latter case, we can solve pz for a set of

values p,, to obtain a relation pz( p, ) from which the value

of the interesting parameter p, can be obtained. This

method has been applied for a waveguide problem in [4],

where the problem is nonstandard in the propagation

factor /3 and standard in the frequency u*. Alternatively,

we can solve for the functional F for a set of the parame-

ters. Because F should have the stationary value zero, this

can be “applied to obtain an idea of the convergence of

difference approximations.

Finally, we study the applicability of the Rayleigh-Ritz

method [2] for nonstandard eigenvalue problems. In linear

cases 1) and 2), the method works in the normal way, i.e., it

transforms the problem to a standard algebraic eigenvalue

problem

In the nonstandard problem of the type 3), however, we

have a quadratic algebraic eigenvalue problem

(A2g+Ag+g”f=o (11)

which can be called a nonstandard algebraic eigenvalue

problem. A problem of this kind arises in circuit theory if

we try to find the natural frequencies of a network consist-

ing of frequency independent resistors, inductors, and

capacitors. Conversely, we may interpret (11) in terms of

an equivalent circuit. The approximate nonstandard eigen-

values in the general case are roots of the algebraic equa-

tion

det[(q,, L(~)@j)+(C@i> B(~)@j)~] ‘! (12)

if the set {@i} is used to approximate the unknown field
function ~. In case 4), this might be of a complicated

transcendental form. Any interesting single root can how-

ever be found by applying Newton’s iteration method.

III. THE WAVEGUIDE WITH REACTANCE

BOUNDARIES

As a first simple example we consider a waveguide of

any cross section with a surfa~e impedance Z, = jX,, where

X, is real and independent of the frequency. Considering

different formulations of the cutoff problem we see that a

nonstandard formulation may lead to a much simpler

functional than a standard formulation, Fig. 1.

A. E – H Formulation

The cutoff problem of a waveguide is equal to a two-

dimensional resonator problem. In fact, the nonpropagat-

ing fields do not depend on the z coordinate. The Maxwell’s

equations with the reactance boundary condition can be

Fig. 1. The waveguide with reactance boundary.

written in the abstract form (1), (2) with L(~) = LO — U&lo,

l?(~) = B. if we define

Lo= (~j, ‘;’) ~o=j(:q
(~o= 0 o“ )‘lfx~ Jx,~t “

(13)

Here, 1 is the unit dyadic 1 = UXUX+ UYUY+ UZUZand 1,

is the transversal unit dyadic It = I – m The inner prod-

ucts are defined by

(fI,f2)~=$c(EI.~2+HIH2)~c (14)

and the elements f are the vector function pairs

(E(x, y)H(x, y)) defined on the surface S and its boundary

curve C. The operator C in the Green’s formula (3) is equal

to 1. This is a standard eigenvalue problem for the ei-

genvalue o. Hence, we may apply the well-known func-

tional (8), which in this case leads to the following sta-

tionary functional:

Jo .Vxg+g. vxf)ds

J(f, g)=
-$(nf Xg- jX,gI,g)dC

(15)

j/(~f”f–wg)ds “

Applying Hermitian symmetric inner product instead of

(14) results in a slightly different form. Equation (15) is

stationary also for complex X,, whereas the Hermitian

symmetric form is not.

B. E Formulation

The trouble with (15) is that it is too complicated: there

are two vector functions f (.x,y), g(x, y) to be approxi-

mated. A simplification can be obtained if we start from

the Helmholtz equation for the electric field. However, in

this case the problem is of nonstandard form

vx(vx E)–ti2p6E=o, on S (16)

nx(vx E)–@(p/x, )Et=o, on C. (17)

Defining the operators by

L(k)= vXv XI– A2pd

B(A)= nX(VXI)– A(p/X,)I1 (18)
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and the inner products by

(f1jf2)=pl”E2~~

(fijf2)b=&l’E2dc (19)

we have C = 1 in the Green’s formula (3) and (7) is of the

second degree

F(A; j)= –, A2/pc f 2dS–?@/X~)@2dC

J+ (v Xf)2dS =0. (20)

This can be solved for A in explicit form and the result is

a pair of functional giving as stationary value the cutoff

frequency u

Despite the more complex appearance, the functional

(21) are more attractive than (15) because there is only one

vector function ~ to be approximated. Solving a quadratic

equation for a stationary functional was done in Morse

and Feshbach [22], but the result was considered more a

fortunate accident than a seed for a general method.

C. Hertzian Potential Formulation

The problem can be still simplified if Hertzian potentials

are applied. In fact, the electromagnetic field can be ex-

pressed in terms of two scalar two-dimensional potential

functions for any waveguide mode [2]

li(r)=[u=k~n(p)– J?vm(p)+ jku, X vm(p)]e–~~z

(22)

@(r) ‘[~,k~m(p)– jpvm(p)– jku, x vm(p)]e–)~z.

(23)

At cutoff we have /3= O and kC = k = cop and the

problem (16), (17) takes on the form

(v2+k2)(~)=0, onS (24)

n. Vm–kpm=O

P=x, /v> on C. (25)

Although there exist no pure TEZ or TMZ modes propa-

gating in a waveguide with general reactance boundaries,

from (24), (25) we see that the m and m potentials are

independent, whence at cutoff the fields are seen to reduce

to TEZ and TMZ modes. This fact can be used to classify

the modes into two sets.

Let us concentrate on the TE cutoff problem. From (24),

(25) we see that it is a nonstandard eigenvalue problem of

the quadratic type. Identifying the operators L = v 2 + k2

and B = n” v – kp, the Green’s formula (3) can be seen to

exist with the operator C = 1 and the inner products de-

fined by ( fl, f2) = /fl f2 dS, (f,, f2)& = $fl fz dC. Hence, (7)

can be solved for the eigenvalue A

$f 2dC

/[ 1

$f 2dc 2 @f)2dS

J(f)=p & P +

2~f 2dS
/

2 f2dS /f 2dS

(26)

The form of this functional is evidently superior to (21)

and (15) in simplicity. Like (21), (26) contains two func-

tional, which are both relevant to the problem. However,

all the information can be obtained from either of them. In

fact, looking at the original problem (24), (25), and values

of the boundary parameter p, we see in comparing the two

functions J+ ( p, f ) that we have the simple relation

J&( P, f)= –J=(–p+f) (27)

or the values obtained from the functional J_(f) for the

parameter p are obtained from the other functional – J+

(f) for the parameter – p. Further, the functional for the
TM cutoff can also be reduced to this same functional

because we may write

()J:”(p, f)=J$E –:, f .— (28)

Hence, it suffices to consider only one functional, say

J+(f).

D. The Circular Cylindrical Waveguide

As a simple numerical example we consider a circular

cylindrical waveguide with surface reactance X. = p q and

radius a, Fig. 2. The Hertzian potential problem can be

solved in terms of Bessel functions; in fact the most general

solution of either potential in (24), (25) is a linear combina-

tion of functions Jn(kp)e * ‘n+. Imposing the boundary

condition for the TE mode leaves us with the characteristic

equation

J~(ka)=pJn(ka). (29)

This equation can be solved for low values of n with high

accuracy applying tabulated values of the Bessel function.

The eigenvalue ka as a function of the parameter p is given

in Fig. 3 for the lowest TEO, modes.

Now we apply the functional J+(f) in (26). Taking a

simple linear approximation of the Hertzian potential func-

tion m(p)

f(p)=p+aa (30)
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Fig. 2. The reactive circular waveguide.

ka

?

,

5

.

3

,

1

0 P

Fig. 3. Relation between cutoff values ka and normalized surface reac-
tance p = X,\ q of a circular cylindrical waveguide. Solid line: exact,

dashed fine: approximate.

we have from (26)

ail+(a)= –
p(l+a)2

Cl* +4a/3 + 1/2

+
/

p*(l+a)4

(a2+4a/3+1/2) + a2+4a;3+l/2 “

(31)

The extremal values of this function with respect to a

can be found very easily with the aid of a programmable

calculator. For example, for p = 1 we have a maximum for

J+ at a = – 0.795 corresponding to the cutoff value ka =

3.188, which is in error by 2.4 percent. The approximate

values obtained from (31) are depicted in Fig. 3 by a

dashed line. It is seen that the approximation by a linear

function is fair for the TEO1 mode but fails for higher

modes, as expected.

Here we have considered only positive values of the

functional. The negative values are obtained if the diagram

is rotated 180° around the origin. The eigenvalues for the

TM modes are obtained if both halves of the diagram are

interchanged. If the figure is drawn on a cylinder in such a

way that the p = — co line coincides with the p = + cc line,

this last operation equals 180° rotation of the figure on the

.cylinder.

E. A Functional for the Reactance

There are two parameters involved in this simple exam-

ple, namely the cutoff frequency and the boundary reac-

tance parameter p. We could consider this problem with

fixed cutoff frequency and find the corresponding values of

p, which are nonstandard eigenvalues of the problem. The

Fig. 4. The ferrite-filled circular waveguide,

problem is of the type 2) for the parameter p, because

B(p) is a linear function and L is a constant. Hence, a

simpler functional (9) can be applied with MO= O, LO= L,

BO = n. v and TO= k. The functional reads

~(Vf)2dS-k2~f2dS
J(f)= (32)

k$f 2 dC -

Applying the same approximation (30) we have

J(a) =
1–(ka)2(a2 +4a/3+ 1/2)

(33)
2(ka)(l + a)2

for which we can find the stationary value of a in an

analytical form a = —(3/(ka )2 + 1/2). Thus, an analytic

approximation for the parameter p in terms of ka exists

–ka((ka)2– 18)
(34)

‘= 6((ka)2–6) “

If we wish to have an approximation for the function

ka( p), we can approach by treating ka fixed and p a

nonstandard eigenvalue, whereas to know the cutoff

frequency for a certain value of p, it is simpler to apply the

more complicated functional (26), once than, (32), for

many times.

IV. WAVEGUIDE WITH AZIMUTHALLY MAGNETIZED

FERRITE

A circular waveguide filled with ferrite medium mag-

netized to remanence with the aid of an axial current pulse

has proved useful in microwave phase shifting devices

[9]-[12]. The operating mode is TEO1, which is rotationally

symmetric and the propagation factor B depends on the

direction (handedness) of the magnetization with respect to

the direction of propagation. The magnetization in the

ferrite can be reversed with a current pulse, whence the

propagation factor is changed in a very short period of

time, Fig. 4.

The permeability dyadic of the ferrite in remanence can

be written in the form [9], [11]

(35)p=po(l+jpw$x~), p=yM+/u.

Here, M+ is the magnetization in the o direction (nega-

tive if in the – @direction) and y is the gyromagnetic ratio

of the medium. The magnetization is assumed homoge-



1200 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 8, AUGUST 1982

neous, but p is not constant because it depends on the

angle + The mathematical problem of TE ~0 mode propa-

gation in the guide can be expressed in terms of a single

scalar component, for instance E. as in [9] or Hz [11]. The

latter obeys the following differential equation and

boundary conditions:

(
V2Hz(p)+ k2–k2

)
&~2-@ Hz(p) =(),

P

H;(O) =Hj(a) =0.

(36)

The conductor filament on the axis is assumed infinitely

thin and for the TE ~0 mode it does not perturb the field

and can in fact be neglected if the field is assumed finite on

the axis.

Equation (36) can be exactly solved in terms of Kummer

and Tricomi confluent hypergeometric functions of pure

imaginary argument [9], [11 ], and the zeros of these func-

tions have been tabulated by Ivanov [11], [12].

The problem is, however, more directly attacked by

variational methods. From (36) we see that there are three

parameters involved: k, p, and ~. It is also seen that the

operator is of the nonstandard form in all of these parame-

ters: it is of second degree in p and ~, whereas if the u

dependence of p is taken into account, (7) would be of the

third degree in k or u. Normally there are two kinds of

questions posed: what is the propagation factor ~ for

certain values of other parameters and for what value of

magnetization M+ or parameter p do we have a certain

propagation factor? The last question can be posed in a

more specific form: for what value of opposite magnetiza-

tion 5 M do we have a certain average propagation factor

(J3+ + ~- )/2 and a certain difference of propagation fac-

tors /3+ –~_?

The functional is easily obtained for ~ from (7) and the

result is

p~f 2 dp
J(f)= –

J
2 f2pdp

/[ )
2

p/f2dP
* +k2-p2k2-~(f’)2pdp .

J
2 f2pdp Jf 2Pdp

(37)

As a numerical example we may take the lowest degree

power function satisfying the correct boundary conditions

(36). From f‘ = 3P(P – a) we have

f(p)= p3–~ap2+a (38)

where a is a parameter. Varying a we can find the sta-

tionary value of J(~) with a programmable calculator in

just a few steps. In Fig. 5 the values of (37) with + sign are

shown in dashed line and comparison with the exact values

[12] can be made. The curves are calculated for ka = 16 for

!3/k

10,

\

\ \
\ \

5-

0?
0 5 1

> IPI

Fig. 5. Normalized propagation constant /3/k in a ferrite-filled wave-

guide for opposite values of the magnetization parameter p. Solid line:
exact [12], dashed line: approximate. ka = 16.

different values of the magnetization parameter p. It is

found that for Ip\ <0.5, the error is less than about 3

percent, which is enough for most engineering purposes.

For higher values of I p I the third-degree polynomial ap-

parently is unable to approximate the field distribution

accurately enough. Approximation for the field is obtained

from (38) by substituting the a value at the stationary

point.

The functional for the other nonstandard eigenvalue p

can be obtained very easily from (37) applying a transfor-

mation. In fact, if in the original problem (36) we replace P

by kp and p by ~/k, the problem does not change at all.

Hence, the same transformation can be made in the func-

tional (37) and the resulting J(f) gives us as a stationary

value an approximation to kp. In fact, we can use the

resulting diagram (Fig. 5) and scale it according to this

transformation, whence we would get the same diagram.

The diagram is, hence, symmetric at the 45° line and it

suffices to determine only half of it.

It is the merit of this method that more complicated

geometries, for example the one involving a ferrite rod on

the axis of the circular waveguide with a dielectric sheath,

can be handled with just a little more complication in the

functional, whereas the exact formulation involves a char-

acteristic equation with ratios of both Bessel’s functions

and Kummer’s hypergeometric functions of imaginary

argument, which make the analysis very time consuming

[12].

V. THE CORRUGATED WAVEGUIDE

Corrugated waveguides and corrugated horns have been

applied as feed elements for parabolic reflector antennas

because of their rotational symmetric radiation pattern and

low crosspolarization [13], [14] (see Fig. 6). The corrugated

waveguide has been studied extensively [ 15]–[ 18] in both

rectangular and circular cylindrical geometry applying ex-

act formulation with special functions. When the corruga-

tions are very thin, i.e., the period d is much smaller than

the wavelength in the guide, the anisotropic surface imped-
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al—— .— —

Fig. 6. The corrugated dielectrically loaded circular waveguide.

ante approximation can be applied [19]. The waveguide

problem differs from the problem considered in Section III

in that the surface impedance is now inherently frequency

dependent, The problem is a nonstandard eigenvalue prob-

lem leading to a transcendental equation for X.

Let us consider a circular waveguide with dense corruga-

tions, possibly filled with dielectric material. If the dielec-

tric constant ~, is high enough, the depth of the corruga-

tions can be made small: s ~ a, whence we can approxi-

mate the true boundary impedance condition involving

Bessel’s functions [18] by those valid for plane surfaces [19]

E,/H@ = – j: tan(kns) E4/Hz = O, atp=a.

(39)

Here, n denotes the refraction index=&. For simplic-

it y, we only try to find out the cutoff frequencies for the

lowest modes. Expressing the fields in terms of the Hertzian

potentials (22), (23) we have for ~ = O and kC = k the

problem [20]

(v2+k2)(n nZ)=O, onS (40)

(~q/z*t o
kn. v(~)+jk o

)( )zzz/q ~
=0, on C (41)

Z,t = j; tan(kns) 2===0. (42)

The boundary conditions (41) do not couple the poten-

tial functions, whence at cutoff there exist pure TE and

TM modes. This could be applied for the classification of

the modes. The TE mode cutoff problem is simple, because

it is the same as that for the smooth conducting guide. For

the TM mode we have the boundary condition

n.vm+kncot (kns)n=O. (43)

Thus, the parameters k, n, ands are in a transcendental

function and, hence, the equation (7) is transcendental

F(k, n,s; f)=k2~f2dS

-~(vf)2dS-kncot(kns)$ f2dC=0. (44)
s c

An explicit functional cannot be found for k nor n but,

instead, fors we can write

J(j)= ;cot-’

[

-~(vf)2dS+k2~f2dS

1

(45)

$
kn f2dC

o \ ka
2 3 3.8P? 4

Fig. 7. Relation between the cutoff value ka, normalized depth of

corrugation s/a and index of refraction n = & in the circular corm-’

gated waveguide of Fig. 6.

From this functional it is possible to obtain the value s

of the corrugation depth, gi”ting us a given cutoff wave-

number k for a certain mode if the potential corresponding

to that mode is approximated in (45). The lowest TM

cutoff mode is the mode designated HE, ~ and at cutoff its

field resembles that of TM,, of the smooth waveguide. For

a trial function we take one with cos o dependence on the

azimuthal coordinate and the simplest polynomial of p

with a parameter and vanishing on the axis, i.e., P(P – a)

f(P, @)= P(P–a)cos@ (46)

If this is substituted in (45) and integrations carried out,

we look for the stationary point, ( d/da) .1(a) = O, whence

we have from the resulting equation ka = (2/3)ka + (5/ka),

which substituted in the J(a) expression gives us

1

[(

I (ka)2(2(ka)2 -75)_ ~
s/a =— cot–’ —

nka nka
))20((ka)2 – 15) “

(47)

The validity of the approximate expression (47) is obvi-

ously limited for low values of s/a, because of the ap-

proximation (39). In Fig. 7 we see values of s/a for

different values of ka and n=& c~culated from (47). It

is seen that all curves go through the point s/a= O, ka =

3.87, which corresponds to the cutoff value of the smooth

waveguide for the TM1 ~ mode. The true value is 3.832,

whence the error is 1 percent. Also, one of the points can

be checked from a diagram in [18]. For a/(a +s) = 0.9 or

s/a = O.1111 we have from (47) the value ka = 3.438, which

lies on the curve in Fig. 3 of [ 18] within reading accuracy.
The possibility of obtaining an explicit expression (47)

for a transcendental nonstandard eigenvalue problem is, of

course, accidental and if we. had not made tlie starting

approximation (39), we could not have arrived at such a

simple result. In that case, we could have treated all the

parameters k, n,s known, and looked for the stationary

points of the functional F(k, n,s; f) itself from (44).
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VI. THE INHOMOGENEOUS RESONATOR

As a final example we consider a cavity resonator with

inserted unknown medium and mainly concentrate on mi-

crowave diagnostic problems, i.e., determination of material

properties by measurements of the resonance frequencies

and Q values of the resonator (see Fig. 8). The material

parameters can be conceived as nonstandard eigenvalues of

the problem and stationary functional can be constructed

directly for the unknown parameters instead of measured

parameters, which reduces the amount of calculations

needed.

A. Dielectric Insert

In this first example we consider a resonator with a

dielectric insert and derive a stationary functional for the

dielectric constant. To test the principle stated in Section

II, viz., that any correct functional stationary in one

parameter (eigenvalue) can be applied to derive a sta-

tionary function for another parameter, we borrow a func-

tional for the quantity U* from [1, eqs. (7)-(45)]

~,= JP-’(vxE)2~~+2$. ((P-’vx~)x~)~~

J
CE2 dV

(48)

Here, the volume integrals extend over the whole resona-

tor and the surface integral over the resonator surface. The

test function E is assumed continuous in V, otherwise an

additional surface term would appear. Both c and p may be

functions of r. Assuming p = pO constant and c = CO(l +

x(r)) such that the susceptibility x is constant in a volume

VI and = O outside VI, we may solve (48) for x

j(VXE)2dV– k2jE2dV+2@z .EX(VXE)dS

X=

J
k’ E2dV

v,

(49)

where the direction of n is inwards. The volume integrals in

the numerator are over the whole volume V and k 2 =

(&po,

To test this expression we consider a simple example: a

rectangular resonator loaded with a dielectric. The lowest

mode (TE ,., ) can be written in terms of sine functions and

the characteristic equation for k is of the form

tan (ka)2 –(na/c)2 (l–d/a)

~(ka)2–(m/c)2

tan~cr(ka)2 –(~a/c)2 (d/a)
—_—

f,(ka)2–(ma/c)2

(50)

oL P.
s

v

ov,

e,
n

Fig. 8. A resonator with a dielectric insert, c,= I + X.

Taking the test function E(r) = u, sin(nz/c)~(x), the

function (49) is reduced in the following form:

~(f’)2dx-(k2-(m,c)2) ]f2dx

J(f)=
+2[f(o)f’(o)– f(a) f’(a)]

k2 ~df’dx
-’0

where other integrals than that in the numerator

from O to a.

(51)

extend

As a test we try the simplest power polynomial satisfying

the correct boundary conditions f(0) = f(u)= O and con-

taining one parameter

f(x)= x(a-.x)(l+ (xx) (52)

which substituted in (51) gives us a function of a too

complicated to be handled analytically. The optimum,

however, is easily obtained with a calculator. For example,

for ~,= 2 and c = d = a/2 we have from (50) the exact

value ka = 5.6530 for resonance. For these figures, from

(51) we obtain the stationary point at aa = 0.498: x =

0.9438, or c, = 1,9438, whence the error is – 2.8 percent. At

c, = 1.1 the error is only 1.1 percent and it grows for

growing c,.

The functional (49) is more applicable for microwave

diagnostics than (48), because the former gives us for a

measured value of the resonance frequency u the inter-

esting susceptance x value directly, whereas to apply (48),

we have to perform a search for the stationary point for

many guessed values of x to obtain the measured ci.

The functional (49) obviously also works for lossy dielec-

trics, in which case x becomes complex. For that we have

to know the complex resonance frequency. For small losses

the real resonance frequency q. and the Q value of the

resonator can be combined to a complex resonance

frequency ~ = o,(1 + j/2 Q).

Also, application of (49) can be compared with the

common perturbational methods. It is evident, that the

present method does not impose as many limitations as

does the perturbation method to the measurement setup.

On the other hand, if the insert is small, the present

method is equivalent with the perturbational method [1].

B. Dielectric — Magnetic Insert

The insert of the previous example may also show mag-

netic susceptibility, in which case we wish to find out two
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parameters: x, and Xm. Measuring two resonances with the

respective frequencies a, and tiz, we are able to construct

stationary functional for each of the interesting parame-
C

ters x,, x~. Starting from the E – H formulation with the

operators (13) (X, = O in this case), (7) can be evaluated to

give

j / J J
X#O E2dV– X~p0 H2dV= –(0 E2dV+p0 ~H2dV

v,
e,’

v, v
,..

+~jV(E. vXH+H. vXE)dV+~@EXHdS. b -’

(53) ‘ I Y

Denoting the factor functional as follows: Fig. 9. The.dielectncally loaded rectangular resonator.

JJK:(E) =ico E2dV
J

W;(H) =#1.LO H2dV equation is the limit of an integral
v, v,

(54)
Xk2~df2dx =~a(f’)2dx -(k2-(n/c)2)

a2dx+2[f(0)f’(()) -f(a) f’(a)l.and the right-hand side of (53) by 4G(E, H ~) , we can /f
write a system of functional equations for x,, Xm for two o

resonance frequencies u,, c02 and the corresponding func- (58)

tions approximating the two modes This equation, in fact, defines a functional d = J( f). Of

(W;(f, )
course, we can try to obtain a more explicit expression by

‘W;(g’))(xel= (::::::::) definedby -’

transforming the function f to an integrable )orm. In fact,

W:( f2) – %Xg2) Xm
if instead of the test function ~ we consider a function g(x)

(55)
g’(x)= fz(x) or~(x)=(~

This system can be solved for the susceptibilities
(58) can be written in the form

wJ(gz)G(f]>gl;~I )–WJ(g,)G( f2,g2;ti2)
x.= X:2 ~((g’’(~))2/4g’(x))dxg(d) =g(0)+———

wJ(g*)w;( f,)– Jq(&)w’J(f2)

(56) _ky7/c)2
(g(~)- g(o))

JK:(f2)@fl, gl; @l)–w:( fl)G(.f2, g2iLJ2) Xk2
x.=

–w;(fJw;(gl)+ w’J(fl)wJ(g2) -*(g’’(a)- g“(o)).
(57)

(59)

(60)

which are stationary for the correct resonance field$ J = Ei, If the inverse of the function g is known, (60) defines an

gi = Hi.
explicit functional J(g) = g– * (RHS) where RHS denotes

The same method can be applied if the insert is com- the right-hand side of the equation” (60).

posed of piecewise homogeneous parts, whose dielectric The application of (60) sets several practical limitations

constants can be solved from the functional equation sys- concerning the choice of the test function g(x):

tern.
1) ~~ should approximate the field function. For a

C. The Geometrical Parameters
lossless problem, g(x) should be a monotonously in-

creasing positive function;
A functional equation can also be written for any geo- 2) g(0)= O should be satisfied;

metrical parameters of the problem.. Any of the measures 3) to proceed analytically, the function (g’’)2/g’ should
of the resonator itself or the dielectric insert is a possible be analytically integrable;
nonstandard eigenvalue. The problem is to find an explicit 4) g-1 should be performable analytically.
form for the parameter in question. Let us consider a

simple example for which this can be made, namely, the The limitation 4) may not be crucial; if g is simple

determination of the thickness d of a dielectric insert in a enough, we can find the stationary value for g(t) and solve

rectangular cavity as shown in Fig. 9. the resulting equation for d in some approximate manner.

The functional (51) can be applied in this case by giving As an example we consider the test function

it the value x and considering the parameter d as the

(

a . 27TX
g(x)=; x–~slnyunknown. The trouble is, the unknown in the functional )

(61)
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which obviously satisfies l), 2), and 3), but not 4). Because

g’= (sin(~x/a))2, we have ~ = sin(nx/a), which is a fair

approximation. Substituted in (60) we have

&Z ((n/a)2 +(~/c)2 - k2). (62)g(d)’—

There is no parameter to be optimized in (62), but the

value g(d) only involves a quadratic error. Substituting the

values of the example in Section VI-A: x =1, c = a/2,

ka = 5.6530, we obtain from (62) g(d)= 0.27 la, and this

transcendental equation can be solved for d by iteration.

The process di /a = 0.5442 + (sin (2rdi_, /a))/2m can be

applied, but it converges very slowly. In this case we have

d ~ 0.522a, which is in error by 4.4 percent. This simple

example should however demonstrate the applicability of

the method.

VII. CONCLUSION

The concept of nonstandard eigenvalue has been intro-

duced and a unified variational principle in abstract opera-

tor form given, applicable for a large variety of problems.

Several simple but nontrivial examples have been studied

with the aid of the suggested method. It is seen that these

problems, not earlier attacked with variational methods

because of the nonstandard form, can be solved applying

very elementary test functions and a programmable calcu-

lator for engineering accuracy.
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